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ABSTRACT 

Neural networks are very popular for fault-tolerant flight control. Of these, the Feedback-Error-Learning EMRAN 

Neural Networks (FEL-EMRAN) are widely studied both in theory and flight tests. The FEL-EMRAN controller 

depends on the feedback controller for learning the inverse dynamics of the plant being controlled. In this paper the 

effects of two distinctly diverse feedback controllers, a classical PID controller and a novel Block Back-Stepping 

controller called as "Diagonally Dominant Back-Stepping" controller, on the fault-tolerance capability of FEL-

EMRAN are discussed. The problem of autonomous landing of a high performance aircraft under unknown actuator 

failures and severe wind disturbances is studied. Six types of hard over actuator failures were investigated. It was 

observed that the fault-tolerance capability of FEL-EMRAN improves with the sophistication of the feedback 

controller, but additional aids like anti-windup and phase compensation schemes were required to overcome the 

adverse effects of position and rate saturation of aircraft control surfaces on the process of feedback-error-learning. 

It is to be noted that the concept of feedback-error-learning evolved from intuition rather than the foundations of 
control theory. Thus, further research is needed on feedback-error-learning of neural networks from the viewpoint of 

fault-tolerant flight control and recent advances in neural network learning theory. 

 

Keywords: - fault-tolerant flight control; autolanding; actuator failures; EMRAN neural network; feedback-error-

leraning; phase compensation; anti-windup; block back-stepping. 

 

I. INTRODUCTION                   
 

The advent of Fly-By-Wire (FBW) control systems and advances in avionics are leading to more and more 

automatic operations almost during the entire flight of an aircraft.. Aircraft is a highly nonlinear safety-critical 
system, and the use of autopilots has many advantages. It improves safety and precision of take-off and landing, 

improves fuel efficiency and passenger comfort, and reduces the physical and mental work load of the pilots so that 

they can concentrate more on other aircraft systems and tasks. However, as a system gets more complex and 

autonomous it will be more prone to faults and failures of its sub-systems and their components. The faults 

associated with an aircraft can be divided into sensor faults, actuator faults and component or structural faults. These 

faults lead to loss of control of aircraft and fatalities. Severe wind disturbances during landing may lead to fatalities. 

Therefore, several programmes were initiated for the development of fault-tolerant flight control systems [1]. The 

fault-tolerant control systems can be broadly divided into passive and active systems. The passive systems use 

robust control techniques like H ∞ control and Sliding Mode Control (SMC), and have 

 

limited fault-tolerance capability based on their design goals. The active fault-tolerant control systems involve Fault 
Detection and Diagnosis (FDD) and reconfiguration of the controller. Although these methods can accommodate 

faults over a wider range, they have some disadvantages like inability to ensure stability of the plant during the FDD 

phase and accommodating unexpected faults. Therefore, several "intelligent" FTFC methods are being researched 

actively. The artificial neural network based FTFC methods fall under this category. 

 

The application of artificial neural networks in flight control has been widely studied [2-3]. Neural networks can be 

used in several ways for controlling a plant, but the underlying principle is the same [4]. The neural network learns 

the inverse dynamics of the plant, either directly or indirectly, so that the system being controlled can be made to 

follow a reference trajectory. In the Direct-Inverse-Learning (DEL) method serious robustness problems may arise 

due to the absence of feedback in the control mechanism. This problem can be overcome in Feedback-Error-

Learning (FEL). The FEL architecture, shown in Fig. 4, comprises of a feed-forward neural controller and a 
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conventional feedback controller. The feedback controller can be any conventional controller like PID, LQR, SMC 

or H ∞ . The total control effort, u , is the sum of the output of the neural network controller, unn , and the feedback 
controller, u fc . The error between the aircraft output and the reference signal is used to vary the parameters of 

neural network and generate the output unn . In course of time, the neural network learns the inverse dynamics of 

the plant, dominates the total control effort. The inclusion of feedback increases the robustness of the combined 

controller. Since the neural network uses online learning, no prior training is required. It has been proven in theory 

and flight tests that the Extended Minimal Resource Allocation Neural Networks (EMRAN) are most suitable for 

aerospace applications [5]. 

 

The landing phase of flight is hazardous due to the proximity of aircraft to the ground and limited time available to 

the pilot for recovery in the case of failures. Boeing's safety reports indicate that about 41% of the commercial 

aircraft accidents occurred during the final approach and landing phases. Of these, 45% of the accidents were due to 

wind disturbances, and the remaining 55% were due to failure of sensors or actuators, structural damage to aircraft, 
and piloting errors [6]. 

 

Thus, the problem of auto-landing of an aircraft, under unknown actuator failures and severe wind disturbances, 

using a Feedback-Error-Learning Minimal Resource Allocation Neural Network (FEL-EMRAN), is discussed in this 

paper. Two distinct types of feedback controllers are used to train FEL-EMRAN. One is a simple classical PID 

controller and the other a sophisticated controller, called "Diagonally Dominant Back-Stepping" (DDBS)  

 

Six types of stuck-actuator failures in conjunction with severe wind disturbances were investigated: failure of either 

left or right elevator, failure of either left or right aileron, failure of rudder, simultaneous failure of both ailerons, 

simultaneous failure of left-elevator and left- or right-aileron and simultaneous failure of right-elevator and left- or 

right aileron. It was observed that the fault-tolerance capability of EMRAN with DDBS feedback controller was 

superior to that with a simple PID controller, but only with aid from phase compensation and anti-windup schemes 
to enhance feedback-error-learning [8]. The results, although highly satisfactory, indicate that the FEL architecture 

using neural networks has to be investigated further from the view point of fault-tolerant flight control, and recent 

advances in neural network learning theory [9]. 

 

The organization of the rest of the paper is as follows: 

 

Section II describes the auto-landing problem whilst Section 

1. discusses the design of FEL-EMRAN controller with PID or DDBS feedback controller. Section IV presents 

the auto-landing simulation results. Section V summarizes the conclusions drawn from this study and the plans for 

future work. 

 

II. AUTOLANDING PROBLEM 
 

The flight path for autonomous landing of the aircraft is shown in Fig. 1 [3, 8]. 

 
Fig 1. Autolanding Trajectory 
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Starting with a wings-level flight at an altitude of 600 m, the aircraft executes two coordinated level turns followed 

by a glide slope descent, flare and touchdown on the runway. To count the landing as successful, the aircraft has to 
land within a rectangular area or "Pill Box" measuring 500 m X 10 m on the runway. 

 

The wind disturbances, shown in Fig. 2, are modeled on the Dryden spectrum. Wind turbulence is assumed to be 

present along the horizontal axis whilst micro bursts along the lateral and vertical axes. 

 
Fig. 2 Wing Profile during Autolanding 

 

A. Aircraft Model and Actuator Failure Cases 

 

MATLAB and Simulink (R2012a version) software was used to develop a 6 DOF nonlinear model of a typical 

fighter aircraft, and simulate auto-landing under severe wind disturbances and actuator failures. The aerodynamic 

data of the aircraft was modified to enable independent deflection of left and right elevators or ailerons [3, 8]. 

Nonlinear first-order models of hydraulic actuators with a time constant of 50 ms, and 60 deg/s rate limit were used 
in the simulations. The deflections of the control surfaces were restricted to: elevators (-25 to +25 deg), ailerons (-20 

to +20 deg), and rudder ( -30 to +30 deg). It was assumed that the control surfaces can get stuck at any angle 

anywhere in their full range of deflections. Further, to create worst case scenarios, the control surfaces were 

assumed to fail at the level turn and descent just before landing. As mentioned in Section I, six types of actuator 

failures were simulated. 

 

B. Off-line Simulation of Fault Tolerance Ranges 

 

The dynamics of modern high performance aircraft are highly nonlinear and coupled. Therefore, it may not be 

possible to safely land the aircraft within the "Pill Box" under failures over the entire ranges of deflection of the 

control surfaces. Therefore, a fault-tolerance feasibility for all the six types of actuator failures was simulated off-

line, before assessing the fault-tolerance capability of the FEL-EMRAN controller. It is assumed that the 
accommodation of fault is possible if, under stuck-actuator failures, it is possible to trim the aircraft in wings-level 

flight, level turning and level descent. A typical fault-tolerance envelope for the case of simultaneous failure of left-

elevator and left-aileron is shown in Fig.3. 

 
Fig. 3 Fault Tolerance Feasibility Envelope for Simultaneous Failure of Left-Elevator and Left-Aileron 
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III. FEL-EMRAN CONTROLLER 

 
In the present study, the original EMRAN algorithm is modified to generate two types of feedback-error-learning or 

inversion-based control schemes [10, 11]: 

 

, Conventional FEL Control Strategy - EMRAN1, and 

 

, Estimation Before FEL Control Strategy - EMRAN2 

 

The Nonlinear Dynamic Inversion (NDI) principle inherent the FEL neural controllers can be explained using the 

pitch acceleration ( q ) and rate of change of angle of attack (α ) dynamics of aircraft: 

 
 

where, δ e is the elevator deflection, and f1, f2 ∈ R are smooth functions with bounded first derivatives. In the 

integrator backstepping algorithm, first the desired pitch rate 

 

4) d is computed by inverting the equation for α , for a given α and a desired angle of attack rate α d 

: 

 

−1  

(2) qd =  f2 α d ,α 

where, α d = Gα α d − α   

and 

Gα    is 

the feedback gain. 

   

Next, for a given qd and α , the desired elevator deflection is computed by inverting the equation for q : 

 

 δ 

e 

= 
−
1 

qd , 

α   (3) 

wher

e, 

  f1  , qd   

qd = Gq qd − 

q and Gq 

is the feedback 

gain.  

           

EMRAN1: In the implementation of EMRAN1, only those parameters of the neural network, such as centers, 

widths and weights, are updated within a given radius of the current input. The various tuning parameters of the 

network are obtained using the Genetic Algorithm under a variety of actuator failure cases. Parameter updates are 

performed using 

 

where, δ e is the elevator deflection, and f1, f2 ∈ R are smooth functions with bounded first derivatives. In the 

integrator backstepping algorithm, first the desired pitch rate 

 

4) d is computed by inverting the equation for α , for a given α and a desired angle of attack rate α d 

: 

 

−1  

(2) qd =  f2 α d ,α 

where, α d = Gα α d − α   

and 

Gα    is 

the feedback gain. 
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Next, for a given qd and α , the desired elevator deflection is computed by inverting the equation for q : 

 

 δ 

e 

= 
−
1 

qd , 

α   (3) 

wher

e, 

  f1  , qd   

qd = Gq qd − 

q and Gq 

is the feedback 

gain.  

           

 

EMRAN1: In the implementation of EMRAN1, only those parameters of the neural network, such as centers, 

widths and weights, are updated within a given radius of the current input. The various tuning parameters of the 

network are obtained using the Genetic Algorithm under a variety of actuator failure cases. Parameter updates are 
performed using 

It can be noted from the above equations that EMRAN2, instead of the simple desired state derivatives α d , q d  , 

uses these derivatives with a correction term as shown in (5): 

α d − Gα α − α d , qd − Gq 

q − qd  (5) 

 

The first term in the above equation is a feed forward that ensures tracking of the desired trajectory. The second 

term is a feedback that minimizes deviations from the desired trajectory 

 

It is to be noted that learning of the inverse function is achieved using (2) and (3), whilst (4) enables the 

calculation of the control signal. In the present study, EMRAN1 controller was implemented with the basic PID 

feedback controller, and EMRAN2 was implemented with the DDBS feedback controller, as discussed in the 

following sub-sections. 

 

A. Simple PID Feedback Controller 

A schematic of EMRAN controller with a classical PID feedback controller is shown in Fig. 4. A linear model of 
the aircraft at the flight condition (h = 600m, V=82.6 m/s) was used to design separate PID controllers for the 

longitudinal and lateral-directional axes. Similarly, separate EMRAN1 neural controllers were designed for these 

axes, as shown in Figs. 5 and 6. For the longitudinal-EMRAN block, the reference signal is the desired pitch rate ( 

qd ) whilst for the 

 

lateral-EMRAN block, the roll rate ( pd ) is the reference signal. The estimated sideslip angle ( βˆ ) is calculated 

using the relation βˆ = χ − αˆφ −ψ , where αˆ ≈ θ − γ , φ ,θ ,ψ  are Euler angles, α is the AoA, γ and χ are the 

flight path angle and the ground track angle respectively. 

 
Fig 4. Schematic of EMRAN Controller with Classical PID Feedback controller 
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Fig. 5 Longitudinal EMRAN Controller 
 

 
Fig. 6 Lateral-Directional EMRAN Controller 

 
Fig. 7 Schematic of EMRAN Controller with the DDBS Feedback Controller 
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Fig. 8 EMRAN2 Controller Block Schematic 

 
Fig. 9 SAAB Phase Compensator for Alleviation of Actuator Rate Limiting 

 

The tracking command generator shown in Fig. 4 generates the reference commands (altitude, velocity and the 

deviations from the desired track) required for autolanding. A delay equivalent to one sampling rate is introduced 

in the feedback loops to account for computational delays. 

 



 
[ICRTCET-2018]  ISSN 2348 – 8034 
                                                                                                                                                                         Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

735 

B. The DDBS Feedback Controller 

 
The novel Diagonally Dominant Back-Stepping (DDBS) controller is a subtly modified version of the conventional 

Block Back-Stepping (BBS) controller [11]. In the design of the DDBS, a mixed axis system was used to describe 

the aircraft body-axis angular rates  p, q, r , the wind axis angle rates μ,α , β  , and the velocity vector rates μ,α , 

β  [7]. 

 

The 3X3 matrices describing these dynamics can be reduced to diagonally dominant forms. Then, the DDBS 

controller can be designed using linear controller design methods. A single coupled linear model of aircraft 

dynamics was used to design the innermost loop control laws in the DDBS controller. Hence a unified block of 

EMRAN2 was implemented with the DDBS feedback controller. A schematic of the EMRAN controller with the 

DDBS controller as the feedback is shown in Fig. 7. A schematic of EMRAN2 implementation is shown in Fig.8. 

 

C. Sliding Model Controller 

It was observed that stuck-actuator failures were causing large transients in the longitudinal response. Hence, a 

simple first order Sliding Mode Controller (SMC) was implemented in the longitudinal axis to overcome these large 
transients, and enable the neural controller learn the inverse dynamics of the plant at a moderate rate. 

 

D. Anti-windup and Phase Compensation Schemes 

 

The feedback-error-learning architecture cannot accurately capture the abrupt changes in aircraft dynamics due to 

position or rate saturation of the control surfaces. Thus, to enhance the fault-tolerance capability of the FEL-

EMRAN controller, in conjunction with the DDBS feedback controller, simple anti-windup and phase compensation 

schemes were implemented. The SAAB phase compensator implemented in the controller is shown in Fig. 9. It was 

interesting to note that better phase response can be achieved by placing the compensator ahead of the actuator. 

 

IV. RESULTS OF AUTOLANDING SIMULATION 
 

Auto-landing of the aircraft under the six types of unknown actuator failures and severe wind disturbances was 

simulated for various positions of stuck control surfaces, covering their full deflection range. These simulations were 

done both for the case of PID feedback controller and the DDBS feedback controller. The simulation results for the 

case of simultaneous failure of left-elevator and left -aileron are shown in Figs. 10 and 11 for the PID and DDBS 

feedback controllers respectively. It can be noted that the fault-tolerance performance of FEL-EMRAN with DDBS 

feedback is far better than the performance with PID feedback. It was observed that the superior fault-tolerance with 

DDBS feedback could only be achieved with the aid of anti-windup and phase compensation schemes. Without 

these aids, the fault-tolerance of EMRAN+DDBS controller degenerates. 

 
Fig. 10 Fault-tolerance Envelope of EMRAN Controller with Classical PID Feedback Controller for Simultaneous 

Failure of Left-Elevator and Left-Aileron. 
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Fig. 11 Fault-tolerance envelope of EMRAN Controller with DDBS Feedback Controller for Simultaneous Failure of 

Left-Elevator and Left-Ailerron. 

 

Typical auto-landing trajectories in the case of double control surface failure (left-elevator and right-aileron) 

are shown in Fig. 12. It can be observed that the autolanding is successful with the aircraft landing within the 

Pill-Box. The increase in the number of neurons, and the variations of the parameters of the first neuron, with 
time, for the case of the double control surface failure are shown in Fig. 13. 

 
Fig. 12 Autolanding with Left-Elevator stuck at -5 deg. And Right-Aileron stuck at +5 deg. 

 

 
Fig. 13 Variation of the parameters of the first neuron (Left-Elevator stuck at +12 deg and Left-Aileron stuck at -4 

deg) 
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V. CONCLUSIONS AND FUTURE WORK 
 

The fault-tolerance performance of a feedback-error-learning EMRAN neural controller for autolanding of an 

aircraft has been studied. Autolandings were simulated for six types of unknown hard over actuator failures in 

conjunction with severe wind disturbances. A classical PID controller and a novel Block Back-Stepping controller 

called as "Diagonally Dominant Back-Stepping" (DDBS) controller were implemented as feedback controllers for 

the EMRAN neural controller. It was observed that the fault-tolerance capability of the EMRAN controller 

improves with the sophistication of the feedback controller. Further, it was observed that the improved 

performance with the DDBS controller could only be achieved with the aid from anti-windup and phase-

compensation schemes to overcome the adverse effects due to position and rate saturation of the control surfaces. 

Without these augmentation schemes the FEL-EMRAN was degrading the fault-tolerance performance of the 
DDBS controller, and failing to land the aircraft in the pillbox in some failure cases. From these observations, it is 

concluded that further research is needed on feedback-error-learning schemes from the perspective of fault-tolerant 

flight control and recent advances in neural network learning theory [12 - 14 ]. It is to be noted that the concept of 

feedback-error-learning evolved from intuition rather than the foundations of control theory. Also, a single neuron 

which is static may exhibit unpredictable dynamic characteristics when placed in a closed-loop for feedback-error-

learning. 
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